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Multi-Phenomenological Explosion 
Monitoring (MultiPEM)

What is the Objective of MultiPEM?
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• Multi-phenomenological explosion monitoring (multiPEM) is a 
developing science that uses multiple geophysical signatures of 
explosions to better identify and characterize their sources. 

• MultiPEM researchers seek to integrate explosion signatures 
together to provide stronger detection, parameter estimation, or 
screening capabilities between different sources or processes. 

• This talk will address forming a predictive capability for 
screening waveform explosion signatures to support multiPEM

Multi-Phenomenological Explosion 
Monitoring (MultiPEM)

What is the Objective of MultiPEM?
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• A predictive capability means that if a hypothetical explosion of 
an anticipated size/yield occurs, we can quantify how well we can 
detect, associate, screen, locate, or characterize the signatures or 
parameters of that source with uncertain data

Multi-Phenomenological Explosion 
Monitoring (MultiPEM)

What is the Objective of MultiPEM?
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Focus: Waveform Signature Detection

Acoustic Source: 
Volumetric injection 

Emplacement  
Media: Tuff 

Source Loading 

Blast loading 

Colocated infrasound 
and seismic sensors 

RF Antennae 

Tribo-electric 
sources 

Multiple 
sensor types

Multiple propagation media, with 
disparate noise stationarity 

(seismic, sound, light) 

Example Explosion Signatures
Aboveground explosion signatures 
include radio, acoustic, and seismic
waveforms. These waveforms give data 
on source size and emplacement

A hypothetical explosion of a given size 
occurs. How well we can detect signatures 
of that source with uncertain data? 

What is our Predictive Capability?
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Monitoring Detection Problems that Require a 
Predictive Capability

This Talk Answers Three Research Challenges
1. Does mean predicted detector performance match mean observed 

performance?

2. Does observed versus predicted detector performance exceed day-
to-day observed variability? That is, does predicted performance 
assembled on day 𝑨 match observations from day 𝑨 better than 
observations assembled on day 𝑩?

3. What is the range in observed versus predicted magnitude 
discrepancies? That is, if a detector predictively identifies explosions 
of magnitude 𝑚 with probability	Pr', what is the observed, absolute 
range ∆𝑚 the detector identifies explosions for that	Pr'? 
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Decision Theory Statement for Any 
Signature

Binary Testing on Two Source Types
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• A waveform detector is a decision rule that compares a statistic 𝑠* 𝒙 with a 
threshold 𝜼 to test if data 𝒙* that records signature 𝑘 is evidence for a target 
signal (hypothesis ℋ/) or not (hypothesis ℋ0):

𝑠* 𝒙 		
ℋ/
≷
ℋ0

				𝜂  

• The statistic 𝑠* 𝒙 has PDFs that depend on the presence (𝑓4 𝑠* 𝒙 ;ℋ/ ) or 
absence (𝑓4 𝑠* 𝒙 ;ℋ0 ) of that target signal

• The probability Pr' of correctly deciding a target signal is present compared with 
the false-alarm probability Pr67 quantifies the detector’s performance

Building a Detector (1/2)

Pr#

Pr$%𝑓 𝑠* 𝒙 ;ℋ0

𝑓 𝑠* 𝒙 ;ℋ/

𝑠* 𝒙

𝜂
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• A waveform detector is a decision rule that compares a statistic 𝑠* 𝒙 with a 
threshold 𝜼 to test if data 𝒙* that records signature 𝑘 is evidence for a target 
signal (hypothesis ℋ/) or not (hypothesis ℋ0):

𝑠* 𝒙 		
ℋ/
≷
ℋ0

				𝜂  

• The statistic 𝑠* 𝒙 has PDFs that depend on the presence (𝑓4 𝑠* 𝒙 ;ℋ/ ) or 
absence (𝑓4 𝑠* 𝒙 ;ℋ0 ) of that target signal

• The probability Pr' of correctly deciding a target signal is present compared with 
the false-alarm probability Pr67 quantifies the detector’s performance

Building a Detector (2/2)

Examples: STA/LTA, correlation, 
subspace, SNR, spectrogram, cone

Pr#

Pr$%𝑓 𝑠* 𝒙 ;ℋ0

𝑓 𝑠* 𝒙 ;ℋ/

𝑠* 𝒙

𝜂
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• A waveform detector is a decision rule that compares a statistic 𝑠* 𝒙 with a 
threshold 𝜼 to test if data 𝒙* that records signature 𝑘 is evidence for a target 
signal (hypothesis ℋ/) or not (hypothesis ℋ0):

𝑠* 𝒙 		
ℋ/
≷
ℋ0

				𝜂  

• The statistic 𝑠* 𝒙 has PDFs that depend on the presence (𝑓4 𝑠* 𝒙 ;ℋ/ ) or 
absence (𝑓4 𝑠* 𝒙 ;ℋ0 ) of that target signal

• The probability Pr' of correctly deciding a target signal is present compared with 
the false-alarm probability Pr67 quantifies the detector’s performance

Building a Detector’s Predictive Capability (1/2)

𝜂

Challenge: If a hypothetical event 
produces signature 𝑘 and statistic
𝑠* 𝒙 , can we predict the probability 
Pr' of detecting that event?

Equivalently, what is the predictive 
capability of that detector?

Pr#

Pr$%𝑓 𝑠* 𝒙 ;ℋ0

𝑓 𝑠* 𝒙 ;ℋ/

𝑠* 𝒙

𝜂

Problem Statement
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• A waveform detector is a decision rule that compares a statistic 𝑠* 𝒙 with a 
threshold 𝜼 to test if data 𝒙* that records signature 𝑘 is evidence for a target 
signal (hypothesis ℋ/) or not (hypothesis ℋ0):

𝑠* 𝒙 		
ℋ/
≷
ℋ0

				𝜂  

• The statistic 𝑠* 𝒙 has PDFs that depend on the presence (𝑓4 𝑠* 𝒙 ;ℋ/ ) or 
absence (𝑓4 𝑠* 𝒙 ;ℋ0 ) of that target signal

• The probability Pr' of correctly deciding a target signal is present compared with 
the false-alarm probability Pr67 quantifies the detector’s performance

Building a Detector’s Predictive Capability (2/2)

𝜂

Method: PDF 𝑓4 𝑠* 𝒙 ;ℋ/ is 
effectively parameterized by the 
magnitude 𝑚 of the hypothetical event 
that produces statistic 𝑠* 𝒙 . 

We will compare observed detector 
counts with predicted counts

Pr#

Pr$%𝑓 𝑠* 𝒙 ;ℋ0

𝑓 𝑠* 𝒙 ;ℋ/

𝑠* 𝒙

𝜂

Problem Statement
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Predicting the Capability of a Radio 
Emission, SNR Detector 

Binary Testing on Two Source Types



Los Alamos National Laboratory

13

Minie Data Collection: 70 Charge Shots
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Radio Emissions from Explosions (1/6)

𝑡4

𝑡 < 𝑡4 𝑡 > 𝑡4

𝑡 > 𝑡4

V/m

Hypothesis Test: Source 0: No Explosion. Source 1: An Explosion
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Radio Emissions from Explosions (2/6)

ℋ0:		𝜎=(𝑡 < 𝑡4) = 𝜎=(𝑡 > 𝑡4)

ℋ/:		𝜎= 𝑡 < 𝑡4 < 𝜎=(𝑡 > 𝑡4)

𝑡4

𝑡 < 𝑡4 𝑡 > 𝑡4

𝑡 > 𝑡4

V/m

Hypothesis Test: Source 0: No Explosion. Source 1: An Explosion
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Radio Emissions from Explosions (3/6)

𝑡4

𝑡 < 𝑡4 𝑡 > 𝑡4

𝑡 > 𝑡4

V/m

Hypothesis Test: Source 0: No Explosion. Source 1: An Explosion

ℋ0:		
𝑁 − 1 𝜎DE=

𝜎= 		~		𝜒HIJ
= 0

ℋ/:		
𝑁 − 1 𝜎DE=

𝜎= 		~		𝜒HIJ
= (𝜆)
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Radio Emissions from Explosions (4/6)

𝑡4

𝑡 < 𝑡4 𝑡 > 𝑡4

𝑡 > 𝑡4

V/m

Hypothesis Test: Source 0: No Explosion. Source 1: An Explosion

ℋ0:		
𝑁 − 1 𝜎DE=

𝜎= 		~		𝜒HIJ
= 0

ℋ/:		
𝑁 − 1 𝜎DE=

𝜎= 		~		𝜒HIJ
= (𝜆)

number of data samples
in variance estimate



Los Alamos National Laboratory

18

Radio Emissions from Explosions (5/6)

ℋ0:		
𝑁 − 1 𝜎DE=

𝜎= 		~		𝜒HIJ
= 0

ℋ/:		
𝑁 − 1 𝜎DE=

𝜎= 		~		𝜒HIJ
= (𝜆)

𝑡4

𝑡 < 𝑡4 𝑡 > 𝑡4

𝑡 > 𝑡4

V/m

Hypothesis Test: Source 0: No Explosion. Source 1: An Explosion

Effective number of 
statistically independent 
samples in the data that 
must be estimated
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Radio Emissions from Explosions (6/6)

𝑡4

𝑡 < 𝑡4 𝑡 > 𝑡4

𝑡 > 𝑡4

Non-centrality parameter 𝝀
is proportional to relative 
waveform SNR that relates 
to source magnitude

V/m

Hypothesis Test: Source 0: No Explosion. Source 1: An Explosion

ℋ0:		
𝑁 − 1 𝜎DE=

𝜎= 		~		𝜒HIJ
= 0

ℋ/:		
𝑁 − 1 𝜎DE=

𝜎= 		~		𝜒HIJ
= (𝝀)
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Observed versus Predicted “ROC Curves”

• Estimate parameters that shape 
“explosion signal present” PDF during 
detector processing

• Construct temporally variable PDF 
curves and compute detection 
probabilities at each ∆𝒎 value

• Integrate area right of concurrent 
detection threshold 𝜂 to estimate 
detection probability Pr'.

• Scale probability by the true number of 
infused waveforms to estimate 
expected number of counts 𝑁 O Pr'.

• Scale template waveform of amplitude 
𝑨𝟎 recording template source with 
magnitude 𝒎𝟎 to amplitude 𝑨	consistent 
with a signal triggered by source of 
magnitude 𝒎 = 𝒎𝟎 + ∆𝒎

𝑨 = 𝟏𝟎∆𝒎𝑨𝟎

• Repeatedly infuse scaled waveform into 
real, recorded noise sampled from 
multiple times and days

• Process noisy waveforms with radio 
emission, SNR detector over days and 
∆𝒎. Dynamically adjust detector 
threshold 𝜂 to maintain constant 10ST
false alarm rate

Observed ROC Curves Predicted ROC Curves
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Detector Parameters of 𝑓4 𝑠* 𝒙 ;ℋ/ (1/2)

Radio, SNR Detector 
• 𝜆 = 10=∆E 7UVH

WV

• 𝜆X = 𝑁IY O 10
Z
[U

Acoustic Power Detector 
• 𝜆 = SNR HV

H[
𝑁= − 2 −𝑁/	

• 𝜆X = 𝑍 O HI𝟏
HI𝟐

𝑁I𝟐 − 2 − 𝑁I𝟏

Seismic Correlation Detector
• 𝜆 = 𝑁 − 1 bV

/SbV

• 𝜆X = 𝑁 − 1 bcV

/SbcV
	

Noncentrality Parameters

Parameter that separates 𝑓4 𝑠* 𝒙 ;ℋ/ and 𝑓4 𝑠* 𝒙 ;ℋ0 curves

𝜂

Pr#

Pr$%𝑓 𝑠* 𝒙 ;ℋ0

𝑓 𝑠* 𝒙 ;ℋ/

𝑠* 𝒙

𝜂

Competing PDFs
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Radio, SNR Detector 
• 𝜆 = 10=∆E 7UVH

WV

• 𝜆X = 𝑁IY O 10
Z
[U

Acoustic Power Detector 
• 𝜆 = SNR HV

H[
𝑁= − 2 −𝑁/	

• 𝜆X = 𝑍 O HI𝟏
HI𝟐

𝑁I𝟐 − 2 − 𝑁I𝟏

Seismic Correlation Detector
• 𝜆 = 𝑁 − 1 bV

/SbV

• 𝜆X = 𝑁 − 1 bcV

/SbcV
	

Noncentrality Parameters Parameter Dependencies

𝑁 samples in window, noise variance 𝜎=, 
waveform amplitude 𝐴0=, source 
magnitude ∆𝑚, 𝑒 is the SNR (dB) statistic 
at detection, hats I are estimates of their 
arguments

𝑁/ samples in STA window, 𝑁= samples in 
LTA window, SNR is the waveform signal 
to noise ratio, 𝑍 is the STA/LTA statistic at 
a detection, hats I are estimates of their 
arguments

𝑁 samples in the, 𝜌 is the cross-
correlation coefficient and hats I are 
estimates of their arguments

Parameter that separates 𝑓4 𝑠* 𝒙 ;ℋ/ and 𝑓4 𝑠* 𝒙 ;ℋ0 curves

Detector Parameters of 𝑓4 𝑠* 𝒙 ;ℋ/ (2/2)
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Operation of the Radio Emission, SNR Detector
Detect Scaled Waveforms Infused into Real, Recorded Radio Noise 

SNR statistic of scaled, infused waveform data

Highlights of detected waveforms

Detected waveform segments
𝑓4 𝑠* 𝒙 ;ℋ0

𝜂
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Quantifying the Predictive Capability 
of a Radio Emission, SNR Detector

Estimate Magnitude Differences between 
Predicted and Observed ROC Curves

Process over 12 Days, −𝟐. 𝟑 ≤ ∆𝒎 ≤ 𝟎
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1. Does mean predicted detector 
performance match mean observed 
performance?

2. Does observed versus predicted detector 
performance exceed day-to-day observed 
variability? That is, does predicted 
performance assembled on day 𝑨 match 
observations from day 𝑨 better than 
observations assembled on day 𝑩?

3. What is the range in observed versus 
predicted magnitude discrepancies? That 
is, if a detector predictively identifies 
explosions of magnitude 𝑚 with 
probability	Pr', what is the observed, 
absolute range ∆𝑚 the detector identifies 
explosions for probability	Pr'? 

ROC Curve Comparison
Three Research Challenges

1. Compute predicted and observed 
ROC curves over a magnitude grid, 
then average both of over time, and 
compare

2. Compare predicted ROC curves for 
each day to observed ROC curves for 
all days; then compare observed ROC 
curves against observed ROC curves 
on other days

3. Introduce ROC “magnitude 
discrepancy”: (i) select a probability 
interval; (ii) find probability Pr'jkl in 
that interval with the max magnitude 
range across mean observed versus 
predicted ROC curves; and (iii) 
estimate the mag range between 
ROC curve pairs at Pr'jkl.

Solution Method
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Radio Emissions from Explosions (1/2)

12 observed ROC curves,
12 predicted ROC curves,
Zoomed from −2.3 ≤ ∆𝑚 ≤ 0

Predicted versus Observed ROC Curves for an SNR Detector
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Radio Emissions from Explosions (2/2)
How do we Quantify our Predictive Capability?

12 observed ROC curves,
12 predicted ROC curves,
Zoomed from −2.3 ≤ ∆𝑚 ≤ 0
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Magnitude difference between predicted and observed ROC curves, at constant 
probability (different ROC curves here, for illustration)

Defining Magnitude Discrepancy (1/2)
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Defining Magnitude Discrepancy (2/2)
Magnitude difference between predicted and observed ROC curves, at constant 
probability (different ROC curves here, for illustration)

We use 1 to estimate 
magnitude discrepancy 
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Radio Emissions from Explosions (1/2)
Hypothesis Test: Source 0: No Explosion; Source 1: An Explosion

the probability with the 
max magnitude range 
across mean observed 
versus predicted ROC 
curves, in this range 
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Radio Emissions from Explosions (2/2)
Hypothesis Test: Source 0: No Explosion; Source 1: An Explosion

the probability with the 
max magnitude range 
across mean observed 
versus predicted ROC 
curves, in this range 
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s
Magnitude Difference at Max Range Probability (1/5)  
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Magnitude Difference at Max Range Probability (2/5)  
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Magnitude Difference at Max Range Probability (3/5)  
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Bin by days

R
ad

io
 E

m
is

si
on

s
Magnitude Difference at Max Range Probability (4/5)  
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Magnitude Difference at Max Range Probability (5/5)
Ra
di
o	
Em

is
si
on
s

Radio	ROC	pairs	per	bin
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Quantifying the Predictive Capability 
of an Acoustic Emission, STA/LTA 
Detector 

Estimate Magnitude Differences between 
Predicted and Observed ROC Curves

Process over 12 Days, −𝟐. 𝟑 ≤ ∆𝒎 ≤ 𝟎
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Acoustic Emissions from Explosions
Predicted versus Observed ROC Curves for an STA/LTA Detector

12 observed ROC curves,
12 predicted ROC curves,
Zoomed from −2.3 ≤ ∆𝑚 ≤ 0

Parameter estimation errors
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Magnitude Difference at Max Range Probability (1/2)
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Magnitude Difference at Max Range Probability (2/2)  
In
fr
as
ou
nd
	E
m
is
si
on
s

Infrasound	ROC	pairs	per	bin
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Quantifying the Predictive Capability 
of an Seismic Emission, Cross-
Correlation Detector 

Estimate Magnitude Differences between 
Predicted and Observed ROC Curves

Process over 12 Days, −𝟐. 𝟑 ≤ ∆𝒎 ≤ 𝟎
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Acoustic Emissions from Explosions
Predicted versus Observed ROC Curves for a Correlation Detector

12 observed ROC curves,
12 predicted ROC curves,
Zoomed from −2.3 ≤ ∆𝑚 ≤ 0

Parameter estimation errors

12 observed ROC curves,
12 predicted ROC curves,
Zoomed from −2.3 ≤ ∆𝑚 ≤ 0

Parameter estimation errors
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Bin by days

Counts per bin and standard error 
not shown on plot

Se
is

m
ic

 E
m
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si
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s

Magnitude Difference at Max Range Probability (1/2)
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Se
is
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ic
	E
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Magnitude Difference at Max Range Probability (2/2)  

Seismic	ROC	pairs	per	bin
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Monitoring Challenges
1. SNR, radio detector is effectively 

predictive. STA/LTA acoustic detector 
is qualitatively predictive. Seismic 
correlation detector observations can 
outperform predictions (explain!)

2. Only SNR detector predictions 
consistently matched observations 
better than other observations. 

3. Magnitude range best/worst cases, in 
probability range 0.8 ≤	Pr'≤ 0.99

1. Radio: ∆𝑚 = 0.025/0.33
2. Acoustic: ∆𝑚 = 0.15/0.85
3. Seismic: ∆𝑚 = 0.10/0.60

Some Solutions
1. Does mean predicted detector 

performance match mean observed 
performance?

2. Does observed versus predicted 
detector performance exceed day-to-day 
observed variability? That is, does 
predicted performance assembled on 
day 𝑨 match observations from day 𝑨
better than observations assembled on 
day 𝑩?

3. What is the range in observed versus 
predicted magnitude discrepancies? 
That is, if a detector predictively 
identifies explosions of magnitude 𝑚
with probability	Pr', what is the 
observed, absolute range ∆𝑚 the 
detector identifies explosions for 
probability	Pr'? 
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Summary
• Objective: build a multi-signature predictive capability. 

“Predictive” means that if a hypothetical explosion of an 
anticipated size/yield occurs, we must quantify how well we can 
detect, associate, screen, locate, or characterize that source.

• Synthesis: ROC curves are predictive when averaged over 
time. However, empirical ROC curves calculated at different 
times are often as predictive as calculated ROC curves, over 
1-12 day periods

Observed versus Theoretical Discrepancy Summary
Radio: ∆𝑚 = 0.025/0.33
Acoustic: ∆𝑚 = 0.15/0.85
Seismic: ∆𝑚 = 0.10/0.60


